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Coalitions and cooperation are key topics in multi–agent sys-
tems (mas). They enable agents to achieve goals that they
may not have been able to achieve independently. A range
of previous studies have found that many problems in coali-
tional games tend to be computationally intractable - that
is, the computational complexity grows rapidly as a function
of the number of participating agents. However, these hard-
ness results generally require that each agent is of a different
type. Here, we observe that in many mas settings, while the
number of agents may grow, the number of different types of
agents remains small. We formally define the notion of agent
types in cooperative games. We then re-examine the com-
putational complexity of the different coalition formation
problems when assuming that the number of agent types
is fixed. We show that most of the previously hard prob-
lems become polynomial when the number of agent types
is fixed. We consider multiple different game formulations
and representations (characteristic function with subaddi-
tive utilities, crg, and graphical representations) and sev-
eral different computational problems (including stability,
core-emptiness, and Shapley value).
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F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11[Artificial Intelligence]: Distributed Artificial Intel-
ligence — Multiagent Systems
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In multi–agent systems (mas), where each agent has lim-

ited resources, coalitions of agents are a very powerful tool
[1, 9, 10]. Coalitions enable agents to accomplish goals they
may not have been able to accomplish independently. As
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such, understanding and predicting the dynamics of coali-
tions formation, e.g. which coalitions are more beneficial,
stable and/or more likely to emerge, is a question of consid-
erable interest in multi-agent settings.

A range of previous studies have shown that many of
these problems are computationally intractable - that is,
the computational complexity (most probably) grows non-
polynomially as a function of input size - in general, and
the number of participating agents - in particular ([7, 11,
12]). However, a close analysis of these hardness results re-
veals that the proofs generally require that each agent be
of a different type (intuitively, agents are of the same type
if their contribution and utility are the same under identi-
cal circumstances). In practice, however, we observe that in
many mas settings this is not the case; in many cases, while
the number of agents grows, the number of different types
of agents remains small.

Accordingly, we re-examine the computational complex-
ity of the different coalition problems, assuming that the
number of different agent types is fixed. We analyze the
structure of relevant coalitions under this assumption, and
show that many of the problems that were proved hard un-
der the general case, are polynomial when the number of
agent types is fixed.

Results and Contributions. We first provide a formal
definition of the notion of agent types in cooperative games
(Section 2). In fact, we provide two notions: strategic types
and representational types. The former defines types based
on the the strategic power of the agents. The latter de-
fines types based on the representation of the game. We
consider the relation between the two notions, and some of
their characteristics.

We then consider three different known game represen-
tations. First we consider the graphical representation of
cooperative games, introduced by Deng and Papadimitriou
[3] (Section 3). For this model [3] proved that the problem
of coalition stability and the question whether the core is
empty are both NP-complete. We show that both prob-
lems are polynomial if the number of types is fixed. We also
show that for this representation the two notions of types
coincide.

Next, we consider Conitzer and Sandholm’s concise rep-
resentation of superadditive games in characteristic form [2]
(Section 4). First we show that for this game representa-
tion it is NP-hard to determine strategic types. Interest-
ingly, if the number of types is fixed, then agents types can
be nonetheless determined. We then consider coalition for-
mation questions in this model. Conitzer & Sandholm [2]
show that deciding whether the core is empty is NP-hard.
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We show that when the number of agent types is fixed, the
problem becomes polynomial. We also show that computing
the Shapley value in this case is polynomial.

Finally, we consider the Coalition Resource Game (crg)
model [12] (Section 5). For this model we again prove that in
the general case it is NP-hard to determine strategic types.
We then show that a host of problems that were previously
proven to be hard in the general case, are tractable when
the number of agent types is fixed. These problems include
the question if a specific coalition is successful; if there ex-
ists a successful coalition; if a specific coalition is maximally
successful; multiple questions regarding efficient utilization
of resources; and more.

The significance of these results is two-fold. Firstly, since
it is not uncommon that the number of agent types is small,
it is important to know which problems are tractable in this
case. Secondly, and more generally, we believe that these re-
sults exhibit the important point that computational hard-
ness should not be considered as a universal impediment to
any algorithmic solution to the problem. Real-life instances
frequently have some additional structure that render them
easier to solve than the general case, let alone the worst-case
underlying the hardness result. We believe that uncovering
such simplifying structures is no less important than provid-
ing general hardness results.
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Cooperative Games. We now provide some basic defini-
tions and notations on cooperative games used throughout
the paper. The reader is referred to [6] for a more complete
exposition. We consider a game with a finite set Ag of n
agents/players (we use the terms players and agents inter-
changeably). A coalition, C, is a (sub)set of agents, C ⊆ Ag.
The grand coalition is the set of all agents, Ag. In a cooper-
ative game each coalition is assigned a value. Formally,

Definition 1.1. A cooperative game (with transferrable
utilities) is determined by the set of agents Ag and a char-
acteristic value function v : 2Ag → R, assigning a value to
each possible coalition.

We note that the value function need not be provided explic-
itly. A payoff vector, (p1, ..., pn), is an allocation of proceeds
to the different agents. Given a payoff vector p = (p1, ..., pn)
and coalition C, we denote p(C) =

�
i∈C pi. In general, we

mostly focus on allocating the proceeds of the grand coali-
tion. A payoff vector is efficient if it allocates all the value of
the grand coalition amongst the players, i.e. p(Ag) = v(Ag).
A payoff vector is individually rational if for any agent i,
pi ≥ v({i}) (otherwise the agent is better off working alone).

Definition 1.2. An imputation is a payoff vector that is
efficient and individually rational.

There are many possible payoff vectors and imputations for
a game. However, under certain models of rational behavior
of the agents, only some of them are possible or stable.

The notion of a blocking coalition is central in defining
stability:

Definition 1.3. A coalition C blocks payoff vector
p = (p1, ..., pn) if p(C) < v(C).

If C blocks payoff vector p, then the members of C would
rather break-off and collectively gain v(C)−p(C) > 0. Thus,
if C blocks the payoff p, the agents of C have an incentive
to break off. Hence, the payoff vector is unstable. The core
is a prominent solution concept focusing on such stability.

Definition 1.4. The core of a coalitional game is the set
of all payoff vectors that are not blocked by any coalition.

Another prominent solution concept is the Shapley value,
which focuses on fairness, rather than on stability. The
Shapley value defines a single payoff vector. The Shapley
value of agent i is defined as:

φ(i) =
�

C⊆Ag\{i}

|C|!(|Ag| − |C| − 1)!

|Ag|! (v(C ∪ {i}) − v(C))

Fixed Parameterized Tractability (FPT). In this paper
we consider the complexity of problems in the case that the
number of agents types of fixed. This is closely related to the
general theory of parameterized complexity in general, and
fixed parameter tractability (FPT), in particular (see [5]). It
is out of the scope of this paper to introduce this theory.
However, we do make a note when the solutions we provide
are FPT.

�� ����
�
� ���
� �����

Intuitively, agents are of the same type if they have iden-
tical characteristics in the game. An attempt to formalize
this notion results in two different possible definitions.

Strategic Types. The first definition considers the strate-
gic power of the players. In this respect, players are of the
same type if they have the same strategic power in the game.
Formally, we consider the marginal contribution of the play-
ers:

Definition 2.1. Agents i, j ∈ Ag are strategically equiv-
alent if for any coalition C, such that i, j /∈ C: v(C ∪{i}) =
v(C ∪ {j}).

The definition is identical to that of symmetric players in
the Shapley value ( [6], page 436).

Claim 2.1. Strategic equivalence of agents is an equiva-
lence relation.

Proof. By definition the relation is reflexive and sym-
metric. It remains to show that it is transitive. Suppose
i1, i2 are strategically equivalent and so are i2, i3. Consider
a coalition C, i1, i3 �∈ C. Consider two cases. If i2 �∈ C,
then, by the equivalence of i1, i2, v(C ∪{i1}) = v(C ∪{i2}),
and by the equivalence of i2, i3, v(C ∪ {i2}) = v(C ∪ {i3}).
Hence v(C∪{i1}) = v(C∪{i3}). If i2 ∈ C, let C′ = C−{i2}.
Then, by the equivalence of i1, i2, v((C′ ∪ {i3}) ∪ {i1}) =
v((C′∪{i3})∪{i2}), and by the equivalence of i2, i3, v((C′∪
{i1}) ∪ {i2}) = v((C′ ∪ {i1}) ∪ {i3}). Hence, v(C ∪ {i1}) =
v((C′∪{i1})∪{i2}) = v((C′∪{i3})∪{i2}) = v(C∪{i3}).

Therefore, strategic equivalence partitions the agents into
equivalence classes, each of which we call a strategic type.

Representational Types. The definition of strategic types
considers the true strategic power of the players. However,
when presented with a game, even strategically equivalent
players may be described differently. For example, consider
a weighted threshold game with three players, 1, 2 and 3,
with weights 30, 40 and 50, respectively. If the threshold
is 60 then all three players, while described differently, are
strategically equivalent. At times, one wants to consider
the types of players as described in the game representation,
rather than by their strategic power. Thus, we introduce the
notion of representational equivalence, which formalizes the
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notion that two players are described identically. In order to
do so, we note that when representing a game, players are
necessarily associated with some identifier; most commonly
a name or number, but possibly also a node in a graph, etc.
Intuitively, players are representationally equivalent, if they
only differ in their identifier. Formally,

Definition 2.2. Let Γ be a game, and let R(Γ) be the
representation of Γ. Let i1, i2 be two players in the game,
with identifiers id1 and id2, respectively. We say that players
i1, i2 are representationally equivalent if giving agent i1 the
identifier id2 and agent i2 the identifier of id1 would result
in an identical representation, R(Γ), for the game.

As an example, suppose that we have three players, A(lice),
B(ob), and C(arol). The values for the coalitions are: v(A,B) =
1, v(A,C) = 2, v(B,C) = 2 and v(A,B,C) = 3. Suppose that
we use a representation that represents the game as a list of
coalition values, listed in lexicographic order. Suppose we
give A the identifier x, B - the identifier z, and C - the iden-
tifier y. Then, the representation of the game is: (2, 1, 3, 2)
(the lexicographic order is xy, xz, xyz, yz). Now, suppose
that we exchange identifiers between A and B (A 	→z and
B	→x). Then the representation of the game remains the
same - (2, 1, 3, 2). Thus, A and B are representationally
equivalent. If, however, we exchange between the identifiers
of A and C (A 	→y and C 	→x), the representation of the game
changes to (2, 2, 3, 1). Thus, A and C are not equivalent.

It is immediate that representational equivalence is in-
deed an equivalence relation, which partitions the agents
into equivalence classes. We call each such class a represen-
tational type. Clearly, if two agents are representationally
equivalent they are also strategically equivalent. Thus, rep-
resentational types form a refinement of strategic types (not
necessarily strict).

Coalition Types. We extend the notion of types from
single agents to coalitions.

Definition 2.3. We say that coalitions C, C′ are equiv-
alent (strategic or representational) if for any agent type
(strategic or representational, res.) both have the same num-
ber of members of the given type.

We now establish that the value of a coalition is only deter-
mined by its type, not by the actual members.

Lemma 2.1. If C, C′ are equivalent (either strategically
or representationally) then v(C) = v(C′).

Proof. We prove for strategic types. Since representa-
tional types are a refinement of strategic types, the lemma
also holds for representational types.

Let C = {c1, c2, . . . , ct} and C′ = {c′1, c′2, . . . , c′t}. For
each agent type, both coalitions have the same number of
agents of the type. Thus, we may assume that they are or-
dered in a way such that for each k = 1, . . . , t, ck and c′k are
equivalent. For k = 0 . . . , t, define a hybrid coalition that
has its first k elements from C and the rest from C′, C(k) =
{c1, . . . , ck, c′k+1, . . . , c

′
t}. Then, C = C(0) and C′ = C(t).

For any k, C(k−1) = {c1, . . . , ck−1, c
′
k+1, . . . , c

′
t} ∪ {c′k} and

C(k) = {c1, . . . , ck−1, c
′
k+1, . . . , c

′
t} ∪ {ck}. Thus, the only

difference between C(k−1) and C(k) is that one has ck and
the other c′k. However, ck and c′k are strategically equiva-
lent. Thus, v(C(k−1)) = v(C(k)). Thus, all the v(C(k))’s are
equal, and v(C) = v(C′).

Algorithms. By definition, there is a simple algorithm to
determine if two agents are representationally equivalent:
exchange their respective identifiers and examine the result-
ing representation. This is not necessarily the case for strate-
gic equivalence. Later we will see examples for which it is
computationally hard to determine if two agents are strate-
gically equivalent.

Notations. We denote by T the set of types (strategic
or representational, depending on the context), and by t
the number of such types. We use lower case letters from
the beginning of alphabet (a, b, c, . . .) to denote the agents
types (either strategic or representational). For a type a, we
denote by Aa the agents of Ag of type a, and na the number
of agents of this type.
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Deng and Papadimitriou [3] introduced the graphical rep-

resentation of coalition games, as follows. Consider an agents
set Ag, and let H = (Ag, E) a weighted undirected graph,
with a weight function w : E → R+ on the edges. The
nodes of the graph correspond to the agents of the game.
The payoff to a coalition C ⊆ Ag is the sum of the weights
in the subgraph induced by C. Note that w.l.o.g. we may
assume that H is the complete graph, as non-existing edges
can simply get weight zero. Given a graph H and weight
function w (as above) we denote by Γ = (H, w) the result-
ing cooperative game.

In [3] it was shown that the problems of determining
whether an imputation is in the core and whether the core
is empty are both NP-complete. Here we show that when
the number of agent types is fixed then both problems are
polynomial.

��� ����������� ����� �����
We first note that in graphical games, strategic types nec-

essarily coincide with representational types. This is estab-
lished by the following lemma.

Lemma 3.1. Let Γ = (H, w) be a graphical coalition game.
Then, agents i1, i2 are strategically equivalent iff they are
representationally equivalent.

Proof. In the graphical representation, players are iden-
tified as nodes of the graph. Consider two agents i1, i2, cor-
responding to nodes h1 and h2, respectively. They are repre-
sentationally equivalent iff for any other node h3, w(h3, h1) =
w(h3, h1).

As noted above (Section 2), if i1, i2 are representationally
equivalent they are also strategically equivalent. Conversely,
suppose i1, i2 are strategically equivalent. In particular, for
any singleton coalition {i3} (i3 �= i1, i2), v({i3} ∪ {i1}) =
v({i3} ∪ {i2}). However, v({i3} ∪ {i1}) = w(h3, h1) and
v({i3} ∪ {i2}) = w(h3, h2). Thus, for every h3, w(h3, h1) =
w(h3, h1). Thus, i1, i2 are representationally equivalent.

Accordingly, in the case of graphical representation we do
not differentiate between strategic and representational types.
Note that since representational equivalence is easy to de-
termine (see Section 2), we obtain:

Corollary 3.1. For coalition games in graphical repre-
sentation, it is polynomially tractable to determine the types
of agents (strategic and representational).
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The problem is defined as follows:

Core–Non–Empty (core-empty)

Instance: A cooperative game Γ.
Question: Is the core of Γ non–empty?

Theorem 3.1. For cooperative games in graphical repre-
sentation, if the number of agents types, t, is fixed, then
Core–Non–Empty is polynomially tractable (FPT).

Proof. In order to prove this we will first show that only
specific types of imputations and specific types of blocking
coalitions need be considered. This is established by the
following two lemmata.

We say an imputation is symmetric if it grants all agents
of the same type identical amounts. The following lemma
immediately follows directly from the convexity of the core.

Lemma 3.2. If the core is non-empty then it contains a
symmetric imputation.

We say that coalition C is saturated if for any type a, C
either contains all agents of the type or none.

Lemma 3.3. If a symmetric imputation p is not in the
core then it is blocked by some saturated coalition.

Proof. Let p be a symmetric imputation not in the core.
Then, by definition, it is blocked by some coalition C. Sup-
pose that C is not saturated. Then, in order to prove the
lemma it is sufficient to show that if we add to C a single
agent of any type contained in C, the resulting coalition still
blocks p. The lemma then follows by induction.

For type a let ca be the number of agents of type a in
C. For each type a, let pa be the amount the imputation p
grants to agents of type a. Since C blocks p, we have:

p(C) =
�

a∈T

capa (1)

<
�

a,b∈T,a�=b

cacbw(a, b) +
�

a∈T

ca(ca − 1)

2
w(a, a)

= v(C)

For a type a define marginal contribution of a to C as the
additional value the players of type a add to the value of C,

M(a, C) = v(C) − v(C \ Aa)

=
�

b∈T,b�=a

cacbw(a, b) +
ca(ca − 1)

2
w(a, a)

Clearly, if for any a, M(a, C) < capa then (by Equation (1))
we can omit all members of type a from C and still get a
blocking coalition. Thus, we can assume, wlog, that for all
types a

capa ≤ M(a, C) =
�

b∈T,b�=a

cacbw(a, b) +
ca(ca − 1)

2
w(a, a)

For types such that ca > 0, i.e. those present in C, we may
divide both sides by ca, obtaining,

pa ≤
�

b∈T,b�=a

cbw(a, b) +
ca − 1

2
w(a, a) (2)

Let a0 be a type present in C for which not all members
appear in C. Let i be an agent of type a0 not in C, and
define C′ = C∪{i}. Then, combining (1) with (2) we obtain:

p(C′) =
�

a∈T

capa + pa0

<
�

b∈T,a�=b

cacbw(a, b) +
�

a∈T

ca(ca − 1)

2
w(a, a)

+
�

b∈T,b�=a0

cbw(a0, b) +
ca0 − 1

2
w(a0, a0)

= v(C′)

Thus, C′ also blocks p, as required.

Thus, in order to check if the core is not empty we need
only determine if there is a symmetric imputation that is not
blocked by any saturated coalition. To this end we construct
a linear programming representation of the problem. The
linear programming problem we define shall be a satisfia-
bility problem (rather than an optimization problem). That
is, it consists only of a set of constraints, and the question
is whether there exists a solution to this set.

The variables of the linear program will represent the sym-
metric imputation p, i.e. a variable pa for each type a. The
program is the following:
�

a∈T

napa = v(Ag) (3)

∀C ⊂ T :
�

a,b∈C,a�=b

nanbw(a, b) +
�

a∈C

na(na − 1)

2
w(a, a) ≤

�

a∈C

napa

(4)

The first constraint (3) ensures that the imputation is
efficient. The second set of constraints (4) ensures that there
are no saturated coalitions that block this imputation.

The number of variables in the program is t and the num-
ber of constraints is 2t. Thus, for a fixed t, the program can
be solved in polynomial time. Furthermore, the run time is
FPT in t.

��� �	
����
The problem is defined as follows:

In the Core (in-core)

Instance: A cooperative game Γ and an imputation x.
Question: Is x in the core?

The problem was found to be NP-complete in [3].

Theorem 3.2. For cooperative game in graphical repre-
sentation, if the number of agents, t, is fixed, then In the

Core is polynomially tractable.

Proof. We prove by providing an algorithm that checks
if there is a blocking coalition or not, and takes O(2t · |Ag|t)
steps.

In order to make sure that an imputation p is in the core,
one must make sure that for each possible subset of agents
(coalition) the value granted to this coalition by the imputa-
tion function is at least the value the coalition’s agents can
achieve by themselves. Otherwise, this coalition will devi-
ate from the grand coalition and achieve its own value, and
therefore will block the imputation.
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Thus, it seems that the algorithm must check all possi-
ble subsets of agents. However, when checking all possible
coalitions, it does not really matter which agent (node) is
exactly in the coalition – but only its type. This is due to
the fact that given that we have ca agents of type a in the
coalition, then we can always assume that the coalition in
question holds the ca agents of type a that get the smallest
allocation from the imputation.

Therefore, the algorithm only needs to consider all pos-
sible subgroups of T and in each subgroup - it needs to
consider all possible sizes of each a ∈ T . Overall, the num-
ber of coalitions to consider is bounded by 2t · |Ag|t. For
each such coalition the algorithm will calculate the value
the coalition can achieve by itself (polynomial time) and the
value it gains from the imputation (again polynomial). If
there exists a coalition that can achieve higher value by it-
self — the imputation is not in the core. Otherwise, the
imputation is in the core.

�� ������� 	�
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This model was introduced by Conitzer and Sandholm in

[2]. Here, we focus on the case of transferrable utilities,
defined as follows. We consider a cooperative game defined
over a set Ag of agents, with subadditive values for the coali-
tions. The characteristic function of the game is represented
by a set of pairs:

W = {〈B, v(B)〉 : B ⊆ Ag}.
The set W provides explicit values for some coalitions. These
values form the basis for determining the values of all coali-
tions as follows. For any coalition C, the value of C is the
maximum aggregate value it can obtain by partitioning it-
self into sub-coalitions with explicitly defined values in W ,
i.e.

v(C) = max{
r�

i=1

v(Bi) : (B1, . . . , Br) is a partition of C,

and : ∀i 〈Bi, v(Bi)〉 ∈ W}.
For this model, Conitzer & Sandholm prove that deter-

mining if the core is non-empty is NP-complete. Here we
show that when the number of agent types is fixed the prob-
lems becomes polynomial. In addition, we consider the prob-
lem of computing the Shapley value for this model and show
that it is also polynomial for a fixed number of types. The
problem of computing the Shapley value was not considered
in [2], but was proven hard in many other models.

��� ����������� ��������� �� �!
For the concise game representation, strategic and repre-

sentational types need not coincide. As an example, consider
the game with four agents, 1,2,3 and 4, and representation:

W = {〈{1, 2}, 1〉, 〈{1, 2, 3}, 1〉}
In this case, the marginal contribution of 3 and 4 to any
coalition is 0, so they are strategically equivalent. However,
they are described differently. We now show that in the
general case it is computationally intractable to determine
the strategic type of agents in this representation.

Theorem 4.1. Given a subadditive game in concise rep-
resentation, it is NP–hard to decide if two players are strate-
gically equivalent.

Proof. The proof is by reduction from EXACT-3-COVER.
Given a universe U = (u1, . . . , un) (n divisible by 3) and a
collection C = {{x1, y1, z1}, . . . , {xm, ym, zm}} of subsets of
U , we construct a sub-additive game in concise form Γ and
two players i1, i2, such that i1 and i2 are strategically equiv-
alent in Γ iff there is an exact-3-cover solution for (U, C).
Set Ag = U ∪ {i1, i2}. For each triplet {xk, yk, zk} ∈ C,
let 〈{xk, yk, zk}, 1〉 ∈ W . In addition, 〈U ∪ {i1}, n/3〉 ∈ W .
Then, the marginal contribution of i2 is always zero. If
there is an exact-3-cover for U , then U alone can reach a
value of n/3 and the marginal contribution of i1 is also zero,
and i1, i2 are strategically equivalent. Otherwise, i1 has a
marginal contribution to U while i2 does not, and they are
not equivalent.

This would seem to imply that it is intractable to determine
if the number of types is bounded by a constant t. This,
however, is not the case. We now show for any fixed t, it is
polynomially tractable to decide if the number of types is at
most t, and if so, to determine the types of all agents. To
this end, we first prove:

Lemma 4.1. Let Γ be a cooperative game in concise form
where agents are of at most t types (strategic or represen-
tational). Suppose that the type of each agent is provided.
Then, for any fixed t, for any coalition C, the value of C,
v(C), can be computed in polynomial time (FPT).

Proof. We construct an integer linear programming

representation of the problem, as follows. Recall that the in-
put to the problem is a set of pairs W = {〈B, v(B)〉 : B ⊆
Ag}. The integer variables of the program shall be of the
form xB , for each B such that 〈B, v(B)〉 ∈ W . For each
agent type a and coalition B, let n(a, B) be the number of
agents of type a contained in B. The program is:

Maximize
�

B:〈B,v(B)〉∈W

v(B)xB

s.t. :

∀a ∈ T
�

B:〈B,v(B)〉∈W

xBn(a, B) = n(a, C)

The set of constraints ensure that, in total, the amounts we
took from each B form a partition of C.

integer linear programming can be calculated in com-
plexity that is exponential only in the number of constraints
(t) and polynomial in the rest of the input size ([5], page
222). Therefore, for a fixed t, we can solve the program in
polynomial time, and obtain the value for v(C). Further-
more, the algorithm is also FPT.

Theorem 4.2. Let Γ be a cooperative game in concise
form. For any fixed t, it is polynomially tractable to de-
cide whether the number of strategic types in Γ is at most t,
and if so, to determine the type of each agent.

Proof. We determine the equivalence classes inductively,
first considering coalitions of size at most 1, then 2, etc. For
sizes s = 1, . . . , n, we say that two agents, i1 and i2, are
s-equivalent if for any coalition C, of size at most s − 1,
such that i1, i2 �∈ C, v(C ∪ {i1}) = v(C ∪ {i2}). Thus, n-
equivalence is strategic equivalence as in Definition 2.1. Also
note that s + 1-equivalence is a refinement of s-equivalence.
Thus, the number of s-equivalence classes is never greater
than the number of strategic types.

For s = 0, all agents are equivalent. Suppose the equiva-
lence classes for s-equivalence are provided, we determine
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those for s + 1-equivalence. Consider two agents i1 and
i2 that are s-equivalent. They are not s + 1-equivalent if
there exists a coalition C such that |C| = s, i1, i2 �∈ C, and
v(C∪{i1}) �= v(C∪{i2}). By Lemma 2.1 we need not check
all coalitions C, but rather only the different coalition types.
There are at most st = O(nt) different such coalition types.
For each such type we do the following. Let B1 be the col-
lection of sets B containing i1, for which a value is provided
in W , i.e. B1 = {B : i1 ∈ B and 〈B, v(B)〉 ∈ W}. Then,

v(C ∪ {i1}) = max
B∈B1

{v(B) + v(C \ B)} (5)

(where v(C\B) is not necessarily provided explicitly). Clearly,
the size of B1 is bounded by |Γ|. If the number of s-types is
at most t, then, by Lemma 4.1, v(C \ B) can be computed
in polynomial time. Thus, Equation (5) can be computed
in polynomial time. Similarly for v(C ∪ {i2}). Thus s + 1-
equivalence can be determined in polynomial time. There
are n2 agents pairs to check. Thus, the s + 1-equivalence
classes can be determined in polynomial time. If ever the
number of classes exceeds t, we stop and report that the
number of strategic types exceeds t. Otherwise, for s = n,
we obtain the strategic types.

��� ���� ��	
��
��
The problem, defined in Section 3.2 was found to be NP-

hard for concise representation [2].

Theorem 4.3. For subadditive cooperative games in con-
cise representation, if the number of types, t (representa-
tional or strategic), is fixed, then Core–Non–Empty is poly-
nomially tractable (FPT).

Proof. Conitzer & Sandholm [2] show that if the value of
the grand coalition, v(Ag), is provided, then deciding core–

non-empty is polynomial. By Lemma 4.1, for a fixed t,
computing this value is polynomial (FPT).

��� ���
��� �����
The problem is defined as follows.

Shapley Value (shapley)

Instance: A cooperative game Γ and agent i.
Question: What is the Shapley value of agent i?

Theorem 4.4. For subadditive cooperative games in con-
cise representation, if the number of agents types (represen-
tational or strategic), t, is fixed, then computing the Shapley
value of any agent is polynomial.

Proof. Recall that the Shapley value of an agent i is
defined as:

φ(i) =
�

C⊆Ag\{i}

|C|!(|Ag| − |C| − 1)!

|Ag|! (v(C ∪ {i}) − v(C))

In general, this computation can be exponential as one needs
to go over all possible coalitions C. However, the key obser-
vation is that we need only consider the different coalitions
types. With this observation, we obtain that the Shapley
value can be expressed as follows. Let T = {a1, a2, . . . , at}
be the set of types (representational or strategic), and re-
call that for each type a, we denote by na the number of
agents in Ag of the type. For integers k1, k2, . . . , kt, let
C(k1, k2, . . . , kt) be the coalition type obtained by taking
k1 agents of type a1, k2 agents of type a2, etc. For brevity

we provide the formula for an agent of type a1. The formula
for agents of other types is analogous. The Shapley value
for agent i of type a1 can be expressed as:

φ(i) =

na1−1�

k1=0

na2�

k2=0

. . .

nat�

kt=0

�
na1 − 1

k1

��
na2

k2

�
. . .

�
nat

kt

�
|C(k1, . . . , kt)|!(|Ag| − |C(k1, . . . , kt)| − 1)!

|Ag|!
· (v(C(k1, . . . , kt) ∪ {i}) − v(C(k1, . . . , kt)))

By Lemma 4.1, for a fixed t the value of each summand can
be computed in polynomial time. The number of summands
in the formula is <

�t
k=1 nak = O(nt). Thus, for a fixed t,

the value of the formula can be computed in polynomial
time. (The algorithm is not FPT since t appears in the
exponent of n.)

�� ��� ��������� ���������  �!�

!�"��
The CRG model introduced in [12], is defined as follows.

The model postulates three types of elements: a set of agents,
Ag, a set of goals, G, and a set of resources, R. These are
related to each other in the following way. Each agent i is
associated with a subset of goals Gi ⊆ G. Achieving any
goal in g ∈ Gi renders agent i satisfied. Goals are achieved
by having the agents contribute resources. Different goals
may require different amounts of each resource type. The
quantity req(g, r) denotes the amount of resource r required
in order to achieve goal g. Each agent, in turn, is endowed
with certain amounts of some or all of the resources. The
quantity en(i, r) denotes the amount of resource r endowed
to agent i. It is assumed that both req(g, r) and en(i, r)
are natural numbers. Each agent aims to become satisfied,
while contributing a minimum of its own resources [4]. To
this end, it may join with other agents to form coalitions
that together achieve their mutual goals.

The CRG model, as described, does not fully confirm to
the general cooperative game structure as defined in Sec-
tion 1.1, as it does not provide a concrete value function
for coalitions. Also, the models assumes non-transferrable
utilities. We consider this model since it is frequently used
for studying agent behavior, on the one hand, and many
coalition formation problems have been found to be hard in
the model, on the other [12]. Here we show that when the
number of agent types is fixed then many of these problems
become polynomial.

Notations. For a coalition C and a set of goals G′, we say
that G′ satisfies C if achieving all goals in G′ renders all
members of C satisfied, i.e. for each i ∈ C, Gi ∩G′ �= ∅. We
denote by sat(G′) the coalition of all agents satisfied by G′.
For a coalition C and a set of goals G′, we say that G′ is
feasible for C if the agents of C, collectively, have sufficient
endowment to achieve all goals of G′ simultaneously, specif-
ically, for each r ∈ R,

�
i∈C en(i, r) ≥ �

g∈G′ req(g, r).

Finally, for a coalition C, we denote by sf(C) the collection
of goal-sets that are both feasible for C and satisfy C:

sf(C) = {G′ ⊆ G : (G′ satisfies C)and(G′ is feasible for C)}.

A coalition C is successful if sf(C) is non-empty, i.e. it can
make all its members satisfied by using contributions from
its members alone.
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An noted, the CRG model does not provide a charac-

teristic value function for coalitions. Thus, Definition 2.1
(strategic equivalence) does not apply. We now provide an
analogous definition for CRG games, similarly based on the
marginal contribution of agents.

Recall that each agent’s goal is to become satisfied, while
contributing a minimum of its resources. Consider two agents
i1 and i2. Intuitively, the agents are strategically equivalent
if their marginal contribution to any coalition is identical.
However, in the CRG model, specifying the coalition alone
is not sufficient. We also need to specify how much each
agent contributes in each resource. We denote by con(i, r)
the contribution of resource r by agent i. A contribution
function con(·, ·) is feasible if for each resource, each agent
contributes at most its endowment of that resource.

Definition 5.1. Consider a CRG game, and let i1 and
i2 be two agents in the game. We say that i1 dominates i2 if
there exists a coalition C and feasible contribution function,
con(·, ·), for its members, such that i1 can satisfy C ∪ {i2}
by adding a contribution con(i1, r), r ∈ R, while i2 cannot
satisfy C ∪ {i2} with an identical or lesser contribution (in
all resources), either because it does not have enough endow-
ment, or the contribution will not satisfy C ∪ {i2}.

Agents i1 and i2 are strategically equivalent if neither i1
dominates i2 nor i2 dominates i1.

Similarly to Claim 2.1, it can be shown that strategic equiv-
alence for CRG is indeed an equivalence relation. We call
each of the resulting equivalence classes a strategic type.

Note that in CRG games, strategic types do not neces-
sarily correspond to representational types. As an example,
consider two agents both of which are satisfied by the same
set of goals. Assume further that one agent has no endowed
resources, and the other agent is endowed with a resource
not required by any goal. Then, they are both strategically
equivalent, though they are represented differently. Analo-
gously to Lemma 2.1 the performance of a coalition is only
determined by its type, not by the actual members.

Lemma 5.1. Let C = {c1, . . . , ct} and C′ = {c′1, . . . , c′t}
be equivalent coalitions, ordered so that for each j = 1, . . . , t,
ck and c′k are equivalent (strategically or representatively).
Then for any contribution function con(·, ·), such that for
any resource r and any j, con(cj , r) = con(c′j , r), C is sat-
isfied iff C′ is satisfied.

The proof is analogous to that of Lemma 2.1 and is omitted.

��� ����������	 
��
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We first show that in the general case it is computationally

hard to decide strategic equivalence.

Theorem 5.1. In CRG games, it is NP-hard to deter-
mine if two agents are strategically equivalent.

Proof. The proof is again by reduction from EXACT-3-
COVER. Consider a universe U = (u1, . . . , un) (n divisible
by 3) and a collection A = {a1, . . . , am} of subsets of U each
of size 3, aj = {j1, j2, j3}, j = 1, . . . , m. We construct a
CRG game as follows. The agent set is U ∪{i1, i2}. For each
agent ui ∈ U there is a unique resource ri, such that ui is
endowed with one unit of ri. For each aj we have a unique
goal g(aj), such all and only agents in aj are satisfied by
g(aj). For aj = {j1, j2, j3} the goal g(aj) requires one unit
of each of the resources rj1 , rj2 and rj3 . In addition, there is

one additional goal ĝ, and one additional resource r̂. Agent
i1 is endowed with one unit of r̂. The goal ĝ satisfies all
agents in U and requires one unit of each resource type (all
ri’s and r̂). Finally, agent i2 is endowed with no resources
and both i1 and i2 are always satisfied.

Clearly, the only possible difference in marginal contribu-
tion between agents i1 and i2 could be if i1 contributes its
unit of r̂ while i2 cannot. This could only possibly benefit
the coalition containing all agents of U , each of which con-
tributes its single unit of resource (ri for agent ui). However,
if there is an exact-3-cover, then with the same contribution
U alone is satisfied without the need for i1’s contribution.
This is by each agent ui contributing to the goal correspond-
ing to the set that covers it in the exact-cover. Thus, the
contribution of i1 is non-material and i1 and i2 are equiva-
lent. Conversely, if the agents of U can all be satisfied with-
out the contribution of i1, then this must necessarily be with
the goals of the form g(aj). Since each agent contributes ex-
actly one and each goal requires exactly 3, at most n/3 goals
can be achieved. Thus, by construction, the achieved goals
correspond to an exact-3-cover. We obtain that i1 and i2
are equivalent iff there is an exact-3-cover.

As we have seen (Section 4.1), this does not preclude the
option that it is polynomial to determine the strategic types
in the case that the number of types is fixed. At this time,
we do not know to prove that this is indeed the case, nor
to disprove it. We leave this as an open problem. In the
following we assume that the types are somehow known.
This can either be representational types, which are easy
to determine, or strategic types that have somehow been
determined.

��� 
��������� ��
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The Successful Coalition problem was introduced in [11]

as the most fundamental question that could be asked on
coalitions and proven to be NP-complete in [12].

successful coalition (sc)

Instance: CRG Γ, and coalition C.
Question: Is C successful?

We now show that if the number of types is constant then
the problem is polynomial.

Claim 5.1. Let C be a coalition and G′ a set of goals.
Then, it is polynomially decidable if G′ satisfies C and to
decide if G′ is feasible for C.

Proof. G′ satisfies C iff for each i ∈ C, Gi ∩ G′ �= ∅. G′

is feasible for C iff for for each resource r,
�

i∈C en(i, r) ≥�
g∈G′ req(g, r). Both are easily checkable in polynomial

time.

Theorem 5.2. Let Γ be CRG game, where agents are of
at most t types, and C ⊆ Ag a coalition. Then for any
fixed t it is polynomially tractable to decide whether C is a
successful coalition.

Proof. The key observation is that for any given type,
all agents of the type can be satisfied by achieving the same
goal. Therefore, it is sufficient to consider goal sets G′ of size
at most t. There are < (|G|+ 1)t such sets. By Claim 5.1 it
is polynomial to determine if G′ satisfies and is feasible for
C. Hence, the problem can be decided in time O((|G|+1)t ·
poly|Γ|), which is polynomial for a fixed t.
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In a similar way we can prove that the following problems
are also polynomial for fixed t: Maximal Coalition problem,
the Maximal Successful Coalition problem, the Necessary
Resource problem, the Strictly Necessary Resource problem,
the Successful Coalition with Resource Bounds problem and
the (C, G∗, r)- Optimal problem [12]. All these problems
were shown to be hard for the general case.

��� �����	
�	 �
 ����	��
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The problem is defined as follows:

Existence of Successful Coalition of Size k (esck)

Instance: A CRG Γ and integer k.
Question: Does there exist a successful coalition of size

(exactly) k?

The problem was considered in [8], and was found to be
NP–hard.

Theorem 5.3. Let Γ a CRG game where agents are of at
most t types, and k ∈ N an integer. Then for any fixed t
it is polynomially tractable to decide whether there exists a
successful coalition of size k in Γ.

Proof. The key observation is that by Lemma 5.1 we
need only consider coalition types. There are at most kt =
O(nt) different coalition types of size k. For each such type
we run the algorithm of Theorem 5.2. The entire process is
thus polynomial.

��� ���	�� �
���	
��
A goal set G∗ is R-Pareto efficient with respect to some

coalition C, iff there is no other goal set in sf(C) which
requires less than G∗ in all resources. I.e. ∀G′′ ∈ sf(C) :

[∃r1 ∈ R : req(G′′, r1) < req(G∗, r1)] ⇒ (6)

[∃r2 ∈ R : req(G′′, r2) > req(G∗, r2)]

Determining if goal set is R-Pareto efficient was found to
be co-NP-complete in [12].

Theorem 5.4. Let Γ be a game in CRG form, where
agents are of at most t types, C ⊆ Ag a coalition, and
G∗ ⊆ G a goal set. Then for any fixed t it is polynomi-
ally tractable to decide whether G∗ is the R-pareto efficient
for C.

Proof. Here again we need only check goals sets of size
at most t. For each such set it is easy to check if Equation (6)
holds, and by Claim 5.1 polynomial to check if in sf(C).

�� ����������� ��� �� �!�"�!#
In this paper we re-examined the complexity of coalition

formation problems in cooperative games in light of the no-
tion of agents types. We introduced two notions of types,
strategic types and representational types, and showed that
they do not necessarily correspond. Furthermore, we showed
that for some representations, e.g. CRG and concise repre-
sentation of subadditive games, it is computationally hard
to determine strategic types. We also showed that if the
number of types is constant, then many previously known
intractable problems become polynomial. This phenomena
was established for several different models: graphical rep-
resentation, CRG and concise subadditive representation. A
recurring underlying theme behind these results is that when
the number of agent types is constant, while the overall num-
ber of coalitions is exponential, the number of coalitions to

consider is only polynomial. The breadth of different models
and problems for which we could establish the results gives
us reason to believe that similar results also hold for other
models and related problems.

From a practical point of view, the results suggest that
when faced with a coalition formation problem one should
consider not only the number of agents, but also their types.
If the number of types is small, it may well be that the prob-
lem is tractable. Thus, in some settings, coalition problems
in the cooperative models are perhaps easier than previously
presumed.

There are many avenues for future work. First and fore-
most, one should examine additional coalition problems and
additional models. It would interesting to find cases for
which the problems remain hard even with a constant num-
ber of types. More generally, we believe that the notion
of agent types is relevant for other problems as well. It
would be interesting to see other problem domains where
intractable problems become tractable when the number of
agent types is constant.
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